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a b s t r a c t

An implicit exact algebraic solution of CPMG experiments is presented and applied to fit experiments.
Approximate solutions are also employed to explore oscillations and effective decay rates of CPMG exper-
iments. The simplest algebraic approximate solution has illustrated that measured intensities will oscil-
late in the conventional CPMG experiments and that using even echoes can suppress errors of
measurements of R2 due to the imperfection of high-power pulses. To deal with low-power pulses with
finite width, we adapt the effective field to calculate oscillations. An optimization model with the effec-
tive field approximation and dimensionless variables is proposed to quantify oscillations of measured
intensities of CPMG experiments of different phases of the p pulses. We show, as was known using other
methods, that repeating one group of four pulses with different phases in CPMG experiments, which we
call phase variation, but others call phase alternation or phase cycling, can significantly smooth the
dependence of measured intensities on frequency offset in the range of ±1

2 cB1. In this paper, a second-
order expression with respect to the ratio of frequency offset to p-pulse amplitude is developed to
describe the effective R2 of CPMG experiments when using a group phase variation scheme. Experiments
demonstrate that (1) the exact calculation of CPMG experiments can remarkably eliminate systematic
errors in measured R2s due to the effects of frequency offset, even in the absence of phase variation;
(2) CPMG experiments with group phase variation can substantially remove oscillations and effects of
the field inhomogeneity; (3) the second-order expression of the effective decay rate with phase variation
is able to provide reliable estimates of R2 when offsets are roughly within ±1

2 cB1; and, most significantly,
(4) the more sophisticated optimization model using an exact solution of the discretized CPMG experi-
ment extends, to ±cB1, the range of offsets for which reliable estimates of R2 can be obtained when using
the preferred phase variation scheme.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Spin relaxation is widely applied to study molecular motion [1]
such as chemical exchange [2,3], protein dynamics [4,5], and even
the structure of invisible protein states which can be determined
by applying relaxation dispersion [6,7]. Accurately measuring
the relaxation rates, especially the transverse relaxation rates, is
the key to fulfilling these studies. There are two ways to measure
the transverse relaxation rates, one is using a single echo with a
series of delay times [8], another one is to acquire the intensities
after different numbers of echoes [9,10]. Although both of these
two methods are going to suppress the B0 field inhomogeneity,
for several reasons, the second method is preferred.
ll rights reserved.
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The method which uses a single echo with a series of delays is
called the Hahn echo [8]. It is a simple experiment and works well
with a perfect pulse which can make the echo intensities to be a
smooth exponential decay, but it lacks a mechanism to suppress
oscillations of measured intensities which depend on the effects
of imperfect pulses [9] or offsets [11]. However, there is an exact,
and several approximate, solutions of the Hahn echo which pro-
vide some sophisticated analysis tools to account for oscillations
due to pulse imperfections [11]. The second method for R2 mea-
surement, which uses a train of echoes, is called the CPMG pulse
sequence [9,10]. Compared to Hahn echo experiments, CPMG
experiments have several advantages. First, the frequency of the
refocusing pulses provides information to study chemical ex-
change [3] and relaxation dispersion [7,12,13]. Second, the effects
of J-coupling on measurements of R2 will disappear if the delay
time between the refocusing pulses of CPMG pulse sequences is
sufficiently short [14], meaning that CPMG experiments may make
the R2 measurements of coupled spins more accurately than the
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Hahn echo [15]. Third, the CPMG pulse sequence may suppress the
effects of imperfect hard p pulses [9,10,16–18] and benefit by
manipulating the inhomogeneous RF field of the surface coils
[19]. More importantly, cycling the phases down the CPMG pulse
train has been found to restrain the oscillations of measured inten-
sities [12,13] with offset frequency. Instead of the conventional
CPMG sequence of phases {x,x,x,x, . . . ,x}, Yip and Zuiderweg found
that the sequence of phases {x,x,y,�y,x,x,y,�y, . . . ,x,x,y,�y} gave
significantly better performance [12]. We call this phase variation,
but it could also be called phase cycling. Finally, the CPMG exper-
iments can handle diffusion, whereas self-diffusion will limit long-
er transverse relaxations if using the Hahn echo to measure R2

[9,10]. As a result, CPMG pulse sequences are widely applied to
measure the transverse relaxation rates.

On the other hand, there are some challenges when applying
CPMG experiments. CPMG experiments are more complicated than
Hahn echo experiments. They will accumulate errors and these
cumulative errors are not easily eliminated, neither when using
hard pulses [20–29] nor soft pulses [30–33]. When applying hard
pulses, CPMG experiments can suppress small errors due to imper-
fect pulses [9,10,20], but they still need to meet some conditions
related to pulses, field inhomogeneity, stabilities in pulse timing
and field-frequency ratio, and effects of diffusion if one is to obtain
accurate R2 estimates [20,22]. Outside these conditions, even using
perfect hard pulses may result in unreliable measured R2s when
the offset of the pulse from resonance is bigger than about 10%
of the amplitude of the p pulses [20].

Furthermore, soft pulses may exacerbate systematic errors in R2

estimates [12,32]. As a consequence of limits of the probe and sam-
ple, it is necessary to perform CPMG experiments with soft p
pulses and the delay time may be equal to the pulse width. Such
wide pulses make the spin physics strongly dependent on offset
frequency, because soft pulses induce rotation about tilted axes
[12,32] and relaxation effects become significant [34]. Therefore,
when applying soft pulses to do CPMG experiments, we have to
be more careful in dealing with offsets and relaxation within
pulses [12,32].

Processing CPMG data can be challenging [20,22,23,35], espe-
cially when soft p pulses are used [12,32]. Previously [11], we have
found that an exact symbolic solution of the Hahn echo experiment
incorporating offset and relaxation effects during pulses, delays
and acquisition can be used to fit experimental data and obtain
accurate R2 estimates for a wider range of offsets than was previ-
ously possible. The goal of this paper is to similarly develop exact
and approximate solutions of the Bloch equations for CPMG exper-
iments (including soft p pulses) and, by fitting them to measure-
ments, to obtain better R2 estimates. In the first step, the general
implicit exact solution of the CPMG experiments will be presented,
then two approximations will be applied to explore the accuracy of
CPMG experiments off resonance, and finally, we will fit our mod-
els to experimental data, validating the predicted wider range of
frequencies for which accurate R2 estimates can be obtained.

As we have seen, some strategies for good measurements of
CPMG experiments such as using even echoes [9,10], making
pulses close to resonance [20], and using specific phase variation
schemes within the echo train [12] can improve the experiment.
In this paper, we will quantify and explain these methods with
the computation of CPMG experiments, and go beyond them. The
simplest approximation confirms that using even echoes is better
than using odd echoes in conventional CPMG experiments with
high-power p pulses, and confirms the strong offset effect on the
spin physics, and helps to elucidate the mechanism by which phase
variation schemes suppress the oscillations present in low-power
CPMG experiments. The computation introduces the second-order
effective decay rate for the phase variation scheme of CPMG exper-
iments, producing a smooth decay in the measured intensities.
2. Overview

In this paper, we restrict discussion to single-spin systems
which can be described by the Bloch equations. The homogeneous
form of the Bloch equations [36,37] is used:

d
dt
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where x is the resonance offset, c is the gyromagnetic ratio, B1 is
the amplitude of the RF pulse, / is the phase of the RF field with re-
spect to the x axis, T1 is the longitudinal relaxation time, T2 is the
transverse relaxation time and Me is the equilibrium z magnetiza-
tion which can be set as a constant number 1. In the computation,
the unit of offset and cB1 is radians per second. In order to simplify
the notations in the following sections, we define b1 � c B1, R1 � 1

T1
,

R2 � 1
T2

, A to be the coefficient matrix and M the vector (Mx,My,Mz,
Me)T, where T indicates transpose. If all parameters of the coefficient
matrix are known, the simulation is easily carried out via numerical
methods. The difficult task is to extract the unknown parameters
we want, for example, T2. We have solved the Hahn echo problem,
and this is a continuation to deal with more complicated experi-
ments using similar methods and notation of [11].

The Bloch equations have been solved in different ways [38–
44]. Recently, we presented an elegant exact solution of the Bloch
equations and applied it to the Hahn echo [11]. In this paper, we
will continue to use the exact solution of the Bloch equations pre-
sented in [11]. Without loss of generality, the excitation pulse can
be supposed to be perfect and it is along the y axis, thus, after the
excitation pulse, the magnetization will be along with the x axis.
We also use the numbers {0,1,2,3} to represent the phases of
pulses, corresponding to the x, y, �x and �y axes, respectively. A
series of numbers, such as 0013, stands for a sequence of pulses
with phases {x,x,y,�y}, following [12].

In the original Carr–Purcell experiments [9] using hard pulses,
the major source of errors in R2 is pulse imperfections. Meiboom
and Gill then proposed that using even echoes with a shifted phase
of excitation and p pulses would eliminate the error due to the
imperfect amplitude of the hard p pulses [10]. We will explore this
effect algebraically by expanding the even and odd intensities
using a Taylor series in the offset frequency (ignoring relaxation
effects).

If soft p pulses are used in CPMG experiments, offsets of the
pulses from resonance significantly affect intensities. Conventional
CPMG experiments fail to self-correct the errors even if the ampli-
tude of the p pulses are perfectly adjusted [12,32]. When soft p
pulses are applied to measure R2, effects of offsets and R1 contam-
ination within p pulses cannot be ignored [11,12,32,34]. Different
methods have been developed to eliminate these effects to im-
prove the accuracy of measurements of R2 including numerical cor-
rection, field gradients, adiabatic p pulses, and phase cycling
[12,13,23,30–32,45,46]. Basically, these methods try to eliminate
the errors due to offsets and then apply T1q as a major way to deal
with the R1 contamination within p pulses [12,13,32], meaning
that CPMG experiments should meet the conditions of spin-lock
T1q experiments [12]. However, we have known that the magneti-
zation within a rectangular pulse is a combined decay, rather than
a single decay [11,38], so we need a tool to deal with general CPMG
experiments or provide more accurate approximations to analyze
the measured intensities of special CPMG experiments, such as
the phase cycling scheme presented in [12,13].

The Bloch equations of the homogeneous form within a pulse
have four eigenvalues [11], one is zero, one is a real number which
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corresponds to T1q [47], and other two are complex conjugates
whose real part represents T2q [48] and imaginary part represents
rotations around the effective rf field. All eigenvalues are indepen-
dent of the phase of the pulse, but they depend on four parameters
including the true R1, R2, the amplitude of the pulse and the offset
(see Eqs. (10) and (11) of [11]). The phase of the pulse will decide
the coefficients of these decay terms and rotation terms. So it is
possible to choose a series of pulses with different phases which
can make some coefficients of rotation terms as small as possible
or only keep one decay term. Then we can suppress effects of the
imperfect rotations due to offsets and obtain the effective R2

[12,13].
The expression of the effective R2 of one specific phase variation

scheme has been provided in [12], but that expression does not in-
clude the effect of offset to the effective R2. On the other hand, the
eigenvalues of the Bloch equations show that the effective R2 is not
independent of offset. In this paper, a second-order expression of
the effective R2 including the effect of offset will be introduced.
Experiments and simulations demonstrate the accuracy of this
second-order approximation of the effective R2 in a range of offsets
a bit smaller than ±1

2 cB1.
Using the exact solution of the Bloch equations to extract R2 via

fitting was successful for Hahn echo experiments [11], but it is a
challenge to find an explicit formula to calculate the CPMG exper-
iments even when only considering the imperfect flip angles but
not relaxation [20,49]. Because the CPMG experiments always re-
peat a pulse or a group of pulses, it can be calculated with a recur-
sive method or the power of a matrix. It is straightforward to apply
the recursive method with the exact solution of the Bloch equa-
tions to fit R2. In this case, derivatives of the objective function
can be computed using the chain rule [50]. The power of a matrix
can be applied in the simplest approximations of CPMG experi-
ments to qualitatively understand the source of oscillations or
the effect of imperfections of hard p pulses.
3. Computation of CPMG experiments

CPMG experiments just repeat delays and echoes many times,
thus, the intensity of CPMG experiments can be computed itera-
tively. A general implicit exact method to compute the CPMG
experiments is presented, which can be applied to estimating the
relaxation time or doing the simulation of CPMG experiments.

Because we have the exact solution of the Bloch equations [11]
and all of the p pulses are identical in the conventional CPMG
experiment [10], the exact solution of CPMG experiments can be
computed by the iteration method (see Fig. 1),

Mn ¼ EMn�1 ð2Þ

where Mn and Mn�1 respectively correspond to the magnetization
vector after and before the nth echo, and

E ¼ EfidEpEfid ð3Þ

in which Ep is the exact solution of the Bloch equations of a p pulse
and Efid represents the effective matrix of a delay s. So E is the exact
Fig. 1. The nth echo in CPMG experiments. Generally, in CPMG experiments, the
amplitude and the length of the p pulses are fixed, but the phases of the p pulses
may be different. s is the delay time between the excitation pulse and the first p
pulse, tp is the length of the p pulse.
solution of one echo. As explained previously, we can set,
M0 = (1,0,0,1)T, which is the state after a perfect excitation pulse
along the y axis.

If we expand Eq. (2), the magnetization after the nth echo can be
computed as

Mn ¼ EnM0 ð4Þ

In fact, E can also be applied to represent the solution of a combina-
tion of several pulses of different phases, for example, if we repeat
one group of four pulses in CPMG experiments (Fig. 2), the effective
matrix of the group of four pulses will be

E ¼ EfidEp;/4 EfidEfidEp;/3 EfidEfidEp;/2 EfidEfidEp;/1 Efid ð5Þ

The implicit solution of the CPMG experiments with phase (see
Fig. 1) is calculated by

Mn ¼ EnMn�1 ð6Þ

where

En ¼ EfidEpðunÞEfid ð7Þ

in which Ep(un) is the exact solution of the nth p pulse with phase
un and En is the exact solution of the nth echo. Eq. (6) computes the
magnetization at every echo, but we may only acquire the signal at
the specific echoes, for example, every four echoes. Eq. (6) is also
able to cope with non-equal delay spaces of CPMG experiments
[51,52] or arbitrary pulse sequences if En represents the effective
matrix of every step.

The eigen decomposition method has been applied to explore
the solution of CPMG [20]. As we have known from the explicit
solution of the Bloch equations, the explicit expression (usually de-
rived by computer algebra) of E will be huge if intermediate vari-
ables are not used [11]. It will be a challenge to compute the
eigenvalues and eigenvectors of the matrix E of entries with huge
expressions. Thus, intermediate variables should be used in com-
puting the full solution of the CPMG experiments, for example,
we can define the matrix E with symbolic variables Ei, j for the com-
ponents of the solution for one echo Eq. (3), and then calculate the
symbolic solution for eigenvalues and eigenvectors of the matrix E
as a function of these variables. The Lagrange interpolation method
has shown advantages to compute the exponential of a matrix [11],
it also can be applied to compute the power of a matrix [53]. Basi-
cally, the full exact solution of CPMG experiments can be given by
the Lagrange interpolation method with intermediate variables,
whereas the explicit solution for CPMG experiments will be as
unmanageable as the explicit solution of the Bloch equations [11].

Generally, the matrix E calculated by Eqs. (3) or (5) has four
eigenvalues: one eigenvalue is 1; one eigenvalue is a real number
and the other two eigenvalues are complex conjugates [20], so
the Lagrange interpolation method is applicable to the power
compuation En [53,54]. The imaginary parts of these two conjugate
eigenvalues result in oscillations of measured intensities in CPMG
experiments. In order to get the symbolic expression, we need to
reform the complex number into the polar form to compute the
power of a complex number [55], this can be seen in the next
section.
Fig. 2. One group of four pulses with different phases in CPMG experiments. We
repeat this group to measure the intensities, which means that we do not acquire
the intensities within this group. This group of phased pulses is the phase variation
scheme /1/2/3/ 4.
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4. Oscillations of conventional CPMG

Oscillations in Hahn echo intensities as a function of delay time
are most sensitive to frequency offset [11]. In this section, we will
explore the analogous effect on CPMG experiments along with the
effect of echo number.

We use the simplest approximate model to compute the explicit
solution of the basic CPMG experiment, without phase variation
and ignoring the effects of relaxations, as an example of the meth-
od of computing the CPMG experiments presented in the previous
section. This computation tells us that the oscillations of intensities
will appear if the effective flip angle is not exactly p. It is possible
to explicitly solve the simplest approximation of the CPMG cases
with combinations of two-echo and four-echo pulses, but the re-
sults are not displayed in this paper.

Now consider the case that the effective flip angle is a which
differs from p due to the pulse imperfections or offset effects

(p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðx=cB1Þ2

q
). For example, the evolution associated with a

p pulse with 0 phase between equal delays s is E=
ð1þ cosðaÞÞðcosðsxÞÞ2 � cosðaÞ � sinðsxÞ cosðsxÞð1þ cosðaÞÞ sinðaÞ sinðsxÞ 0

sinðsxÞ cosðsxÞð1þ cosðaÞÞ �1þ ð1þ cosðaÞÞðcosðsxÞÞ2 � cosðsxÞ sinðaÞ 0
sinðaÞ sinðsxÞ cosðsxÞ sinðaÞ cosðaÞ 0

0 0 0 1

2
66664

3
77775 ð8Þ
The matrix E (Eq. (8)) can be diagonalized with the eigen decompo-
sition method as

E ¼ PDP�1 ð9Þ

where D is a diagonal matrix and the ith entry of D corresponds to
the ith column vector of the eigenvector matrix P, then

En ¼ PDnP�1 ð10Þ

It is easy to get the eigenvalues and eigenvectors of the matrix E
(Eq. (8)) in Maple1 and express the eigenvalues in the polar form
of a complex number,

k ¼

ei/z

e�i/z

1

1

2
6666664

3
7777775

ð11Þ

where

/z ¼ arctanðy; xÞ ð12aÞ

y ¼ cosðsxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ cosðaÞÞ 2� ð1þ cosðaÞÞðcosðsxÞÞ2

� �r
ð12bÞ

x ¼ �1þ ðcosðsxÞÞ2 þ cosðaÞðcosðsxÞÞ2 ð12cÞ

/z is called the principal argument of a complex number defined as
0 6 /z < 2p [55]. Eigenvectors P and their inverse P�1 are not
displayed.

Then, according to Eq. (4), the z magnetization after n echoes
will be

Mz;n ¼
sinðsxÞ sinðaÞðcosðn/zÞ � 1Þ

�2þ ðcosðsxÞÞ2 þ cosðaÞðcosðsxÞÞ2
ð13Þ
1 http://www.maple.com.
If relaxation is ignored,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

x þM2
y þM2

z

q
will be equal to 1 at any

time and the measured intensity after n echoes can be calculated
as the following expression

sðnÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

x;n þM2
y;n

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�M2

z;n

q
ð14Þ

Clearly, if sin(sx) – 0 and sina – 0, Eq. (13) tells us that the z mag-
netization may oscillate along with the number of the echoes unless
/z = 0 which only occurs at isolated offsets (including on reso-

nance), this means that the measured intensity of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

x þM2
y

q
will

oscillate with different numbers of echoes when the p pulses are
not perfect [20] or when soft p pulses are applied [12,32] in the con-
ventional CPMG experiments [10].

Because a represents the flip angle, Eq. (14), which is simpler
than the solution given in [49], is equivalent to the solution of
CPMG of an imperfect hard p pulse when relaxations are ignored.
In the following, we apply Eq. (14) to determine that using even-
echo is better than using odd-echo in CPMG experiments of hard
p pulses.
The simplified Taylor series of s(n) evaluated at a = p is

sðnÞ � 1� 1=8ðsinðsxÞÞ2ðcosðnpÞ � 1Þ2ða� pÞ2 þ Oðða� pÞ3Þ
ð15Þ

where the big O notation represents the order of the error which
can be seen as least-significant terms in the approximations.

So we get

sð2kþ 1Þ � 1� 1=2ðsinðsxÞÞ2ða� pÞ2 þ Oðða� pÞ3Þ ð16Þ
sð2kÞ � 1þ Oðða� pÞ3Þ ð17Þ

where k is a non-negative integer. In fact, if we directly compute the
Taylor series of Eq. (14) of an even number of echoes, we have

sð2kÞ � 1þ Oðða� pÞ6Þ ð18Þ

Evidently, s(2k) will be more close to 1 and less sensitive to offset
than s(2k + 1), which means that even-echo could suppress the er-
ror due to pulse imperfections [10]. We are able to apply the above
method to investigate the performance of other combinations of
even-echo pulses which are called phase alternation [16–18].

5. Applying optimization model on exploring oscillations

Eq. (13) only tells us that there may be oscillation in CPMG
experiments, but we need more accurate models to predict its
strength. Ignoring relaxation, the oscillation is zero when

f ðnÞ ¼
Xn

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

x;k þM2
y;k

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

x;k�1 þM2
y;k�1

q� �2

ð19Þ

is zero. The larger the value of f(n), the stronger the oscillation.
Thus, we can formulate an optimization problem to find out the
maximum value of f(n) for a given range of offsets and delays with
a given pulse sequence. If the maximum value of f(n) is close to 0,
the measured intensities of using the given pulse sequence will
not oscillate. In the following computation, we set n = 20. By setting

http://www.maple.com


Table 1
CPMG experiments with one identical pulse of a given phase. The table is obtained by
solving the optimization problem for a given phase. For example, when the phase of
the p pulse is along the x axis, the possible maximum difference between intensities
along with the number of echoes will be 0.4 given at x ¼ 1

2 cB1 and s = 1.5tp (see
Fig. 3), this means that the difference of intensities of other offsets and delay times
will be smaller than 0.4 for the given range of offsets and delays.

Phase Maximum difference x/cB1 s/tp

0 0.411 0.500 1.522
2 0.411 0.500 1.522
1 0.946 0.183 2.476
3 0.969 0.093 4.000

Table 2
CPMG experiments with groups of two pulses. This table displays that the phase
variation schemes 13 and 31 give the smallest oscillations among phase variation
schemes with two pulses.

Phase Maximum difference x/cB1 s/tp

1–3 0.192 0.500 1.337
3–1 0.192 0.500 1.337
2–2 0.381 0.500 0.041
0–0 0.401 0.500 1.995
3–3 0.846 0.188 4.000
1–0 0.910 0.500 4.000
3–2 0.910 0.500 4.000
1–1 0.944 0.156 3.422
0–3 0.968 0.473 0.313
2–1 0.968 0.473 0.313
0–1 0.994 0.491 1.142
3–0 0.994 0.491 1.406
0–2 0.996 0.047 0.000
2–0 0.998 0.016 0.000
1–2 1.000 0.490 1.392
2–3 1.000 0.498 1.406

Table 3
CPMG experiments for the top eight phase variation schemes with four pulses. All
other schemes have maximum differences greater than 0.10. Up to symmetries and
similarities, all of these top eight phase variation schemes will be represented by one
phase variation scheme 0013, as was independently derived in [12].

Phase Maximum difference x/cB1 s/tp

2–2–3–1 0.031 0.500 3.978
0–0–1–3 0.035 0.500 3.999
1–3–2–2 0.036 0.500 0.116
3–1–0–0 0.036 0.500 0.116
3–1–2–2 0.043 0.500 2.446
1–3–0–0 0.043 0.500 2.446
0–0–3–1 0.053 0.500 3.090
2–2–1–3 0.066 0.500 3.215
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Fig. 3. Oscillations with respect to the echo number. This figure clearly displays
that the measured intensities will oscillate between 1 and 0.6 along with the
number of echoes when x ¼ 1

2 cB1 and s = 1.5tp. If there were no oscillations, all of
intensities would be equal to 1.
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the index of Mk and Mk�1 in Eq. (19) as 2k and 2(k � 1) or 4k and
4(k � 1), we are able to investigate CPMG experiments of applying
the combinations of two or four pulses, if we compute the magne-
tization after every echo.

When the relaxations are ignored in CPMG experiments, the
solution of one echo, En, which is computed with the effective rota-
tion field will be equivalent to the solution of Model 3 of [11] by
setting R1 = 0 and R2 = 0 (see Appendix D.3 of [11]) and then Mk

(k = 1, . . . ,n) will be calculated by Eq. (6). In this analysis of the
oscillation, two dimensionless variables are defined l ¼ x

cB1
and

d ¼ s
tp

. A p pulse means that cB1tp = p. After applying these defini-
tions in the optimization model which utilizes Eq. (6) as an equal-
ity constraint, variables would be Mk (k = 1, . . . ,n), l and d. In [11],
we determined that measuring R2 using Hahn echo experiments is
unreliable if the offset is larger than 1

2 cB1, so the bounds of the ratio
of the offset and the amplitude of the pulse can be set as 0 6 l 6 1

2,
this assumption matches the typical 15N offsets of proteins on
600MHz spectrometers when the amplitude of the p pulse is at
least 2000 Hz [12,32]. Once the bounds of l are decided, the upper
bound of the ratio of the delay time over the pulse length d can be
set to 4 corresponding to an upper bound of xs = 2p. It is easy to
code the optimization model in AMPL2 [56] and solve the problem
using IPOPT (Interior Point OPTimizer)3 [57].

Tables 1–3 show the possible maximum systematic error in the
intensities for given phases with respect to one pulse, groups of
two pulses and groups of four pulses. The maximum difference
of intensities corresponds to the maximum value of Eq. (19).

Because the objective functions are extremely non-linear and
they have periodical terms such as trigonometric functions, the re-
sults shown in tables are only local optimal solutions with random
initial variables of x/cB1 and s/tp, we have tried to resolve the opti-
mization problems to get stable optimal solutions. The maximum
difference of intensities tells us the strength of the oscillation.
For example, if we measure the intensities at every echo, the inten-
sities may oscillate within 40% if the phases are 0 or 2 (see Fig. 3),
but if the phases are 1 or 3, the intensities of CPMG experiments
may fluctuate between 0 and 1.

These three tables demonstrate that applying phase variation
schemes can suppress oscillations in CPMG experiments. The
scheme 0013 (originally observed in [12]) and schemes equivalent
up to symmetry minimize the maximum oscillation to within 7%
when jjxjj 6 1

2 cB1 and s 6 4tp. Fig. 4 illustrates that the magnetiza-
tion is almost back to the x axis after one group of the phase vari-
ation scheme 0013. Thus, if relaxations are considered, the
measured intensities of applying 0013 will decay smoothly for
the given range of offset due to non-oscillations (see Fig. 10), and
the sampling groups could be chosen arbitrarily. In the next sec-
tion, we try to elucidate this good behaviour by considering the
second-order approximation.
2 http://www.ampl.com/.
3 https://projects.coin-or.org/Ipopt; version: 3.8.1
6. Measured R2 of CPMG experiments with phase cycle scheme
of 0013

The previous section demonstrates that the 0013 phase varia-
tion scheme can suppress the oscillation of measured intensities
of CPMG experiments when jjxjj 6 1

2 cB1. We see triangles of
Fig. 10 which represents the measured intensities of applying the
0013 phase variation scheme decay smoothly and experiments of

http://www.ampl.com/
http://https://projects.coin-or.org/Ipopt
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Fig. 4. Illustration of magnetization vectors of the phase variation scheme 0013. (b), (e), (h), and (k) display the effects of pulses. (a), (d), (g) and (j) show the magnetization
before pulses (c), (f), (i) and (l) display the magnetizations after each echo. The initial magnetization is along the x axis, after one loop of 0013, the magnetization is almost
parallel to the x axis again. (c) and (f) elucidate the advantage of even over odd echoes.
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different offsets have different effective decay rates. The new ques-
tion is what the effective decay rate of measured intensities is
when the 0013 phase variation scheme is applied? Eq. (15) of
[12] which is called the zeroth order expression (Eq. (26)) in our
paper suggests that the effective R2 is independent of offset, but
Figs. 6 and 10 shows that the effective decay rates are not indepen-
dent of offset, otherwise, the effective R2s (green) of the 0013 phase
variation scheme in Fig. 6 should be on a horizontal line with re-
spect to the ratio of offset over pulse amplitude. The eigenvalues
of the Bloch equations also tell us that the effective decay rates de-
pend on offsets [11].

In this section, a second order approximation of effective decay
rates with respect to the ratio of offset over the amplitude of the
pulse evaluated on resonance will be obtained. The first step is to
calculate the intensity on resonance of the 0013 phase variation
scheme, then we will apply the effective rotation approximate
solution of the Bloch equations which are called Model 3 in [11]
to calculate the second order approximation of the intensities for
offsets. Finally we will reproduce Fig. 6 of [12] with our new
approximate formula and display the results of experiments.

[12] has shown that average magnetization of 0013 and 2231
must be implemented to measure R2, thus in our computation
and experiments, two scans are applied and the measured intensi-
ties will be computed by the average magnetization of applying
these two phase variation schemes. So in the following, all intensi-
ties are computed as the average of two phase variation schemes,
0013 and 2231.

Using the exact solution of the Bloch equations, the explicit
expression of the intensity of on-resonance of one loop of the
phase variation scheme 0013 can be obtained. But normally,
R1 6 R2� cB1, the second-order approximation of the eigenvalues
of the Bloch equations of on-resonance with respect to the ratio
of R1/R2 evaluated at R1/R2 = 1 is

k ¼

�R2

�1=2R1 � 1=2R2 þ ib1

�1=2R1 � 1=2R2 � ib1

0

2
6664

3
7775 ð20Þ

where i ¼
ffiffiffiffiffiffiffi
�1
p

. The general solution of the Bloch equations of on-
resonance can be obtained by substituting k of Eq. (13) of [11] with
Eq. (20). Considering the phases and tp b1 = p, we have effective
matrices Ep,0, Ep,1, Ep,2, Ep,3 of p pulses corresponding to phases
x,y,�x,�y, then we obtain the effective matrices of 0013 and 2231,

E0013 ¼ EfidEp;3EfidEfidEp;1EfidEfidEp;0EfidEfidEp;0Efid ð21Þ
E2231 ¼ EfidEp;1EfidEfidEp;3EfidEfidEp;2EfidEfidEp;2Efid ð22Þ

and the average magnetization of two phase variation schemes,

M4 ¼
1
2
ðE0013 þ E2231ÞM0 ð23Þ

because M4[2] which is the magnetization along the y axis is 0, the
on-resonance intensity of one loop which is the magnetization
along the x axis, M4[1], is

R1�R2ð Þ4

R1�R2ð Þ2þ4b2
1

� �2 e�2 sþtpð ÞR2 þb2
1e�2R2tp�2sR1

R2
2

 !0
B@

þ 16 R1�R2ð Þ4R2
1b2

1e� 2sþtpð ÞR1�R2 tp

R1�R2ð Þ2þ4b2
1

� �
R1þR2ð Þ2þ4b2

1

� �
R2

1�R2
2

� �2
þ8b2

1 R2
1þR2

2þ2b2
1

� �� �

þ 8 R1�R2ð Þ4R1b2
1e�3=2R2tp� 2sþ1=2tpð ÞR1

R2 R1�R2ð Þ2þ4b2
1

� �
R2

1�R2
2

� �2
þ8b2

1 R2
1þR2

2þ2b2
1

� �� �

þ�8 R1�R2ð Þ2b2
1e�1=2tpR1� 2sþ3=2tpð ÞR2

R1�R2ð Þ2þ4b2
1

� �2

þ 16b4
1e�tp R1� 2sþtpð ÞR2

R1�R2ð Þ2þ4b2
1

� �2

1
CAe�2R2 tpþ3sð Þ ð24Þ

We are able to further simplify by ignoring low-order terms (in
terms of the pulse amplitude), resulting in the approximation of
the intensity on resonance of applying one loop of the phase varia-
tion scheme 0013:

e�8sR2�tpR1�3R2tp ð25Þ

Therefore, the effective R2 on resonance when applying the 0013
phase variation scheme will be

R0013on�resonance

2�eff ¼ R2 þ
ðR1 � R2Þtp

8sþ 4tp
ð26Þ
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Fig. 6. Simulated profile of effective decay rates of CPMG experiments of soft p
pulses. Reproduced Fig. 6 of [12], with offset/pulse amplitude on the horizontal axis,
and R2 (s�1) on the vertical. Parameters are the same as [12]. s = 250 ls, tp = 200 ls,
R1 = 2.4 s�1, true R2 = 6 s�1, cB1 = 2500 Hz. The sampling points are at loops: 2, 12,
35. The red curve represents 0000, the green curve 0013, the blue curve plots Eq.
(29) with the same parameters. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

 9

 10

 11

 12

 13

 14

R
2 

(s
-1

)

A.D. Bain et al. / Journal of Magnetic Resonance 209 (2011) 183–194 189
which is the same as Eq. (15) of [12]. As we said before, we focus on
jjxjj 6 1

2 cB1 in this paper, which means that Eq. (26) is the zeroth
order approximation of the effective R2 with respect to the ratio
x/cB1 evaluated on resonance, the computation shows that Eq.
(26) is also the first order approximation of the effective R2 with re-
spect to the ratio of x/cB1. Eq. (26) is not suitable for describing the
behaviour of large offsets outside of �15% � 15% of c B1 [12,13]. In
the following, we will deduce the second order approximation of
the effective relaxation rate with respect to x/cB1.

We are able to calculate the intensity with offsets by using the
second-order approximation of the eigenvalues (see Eq. (18) of
[11]) as we did for on resonance intensity, but the expression is
not simple enough to identify these significant terms. In order to
simplify our computation, a soft p pulse is approximated by an

effective rotation field of tp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ b12

p
with two on-resonance de-

lays of tp/2 (see Fig. 5), which is one of the second-order split meth-
ods called Model 3 in our previous work [11] to compute the
approximate solution of the Bloch equations displayed in [11].
The solution of Model 3 is displayed in Appendix D.3 of [11].
Substituting Ep,0, Ep,1, Ep,2, Ep,3 of Eqs. (21) and (22) with the
approximate solution of the Bloch equations with offsets, we calcu-
late the magnetization vector Eq. (23). Then the intensity isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M4½1�2 þM4½2�2
q

. Setting l = x/b1, the second-order approxima-

tion of the measured intensity of one loop of 0013 with respect
to l evaluated at l = 0 is

e�4R2ð2sþtpÞ 1þ 4ðe�ð2sþtpÞðR1�R2Þ � 1Þl2� �
þ Oðl3Þ ð27Þ

Because two different approximate methods are used to calculate
Eqs. (25) and (27), we see that the constant term of Eq. (27) is not
the the same as Eq. (25). Model 3 approximates the effective decay
as R2, which does not include the R1 contamination even on reso-
nance. So Eq. (25) will be more accurate to represent the measured
intensity on resonance of one loop of 0013 than e�4R2(2s+tp ). Based
on the discussion, we if substitute e�4R2(2s+tp) of Eq. (27) with Eq.
(25), then we obtain the second-order approximation of the mea-
sured intensity of one loop of the phase variation scheme 0013 with
respect to l evaluated at l = 0 is

e�8sR2�tpR1�3R2tp 1þ 4ðe�ð2sþtpÞðR1�R2Þ � 1Þl2� �
þ Oðl3Þ ð28Þ

Thus, the second-order effective R2 will be

R0013
2�eff ¼ R2 þ

R1 � R2ð Þtp

8sþ 4tp
þ 1� e� 2sþtpð Þ R1�R2ð Þ

2sþ tp
l2 þ Oðl4Þ ð29Þ

If the delay time is chosen to make

�ð2sþ tpÞðR1 � R2Þ � 1 ð30Þ

Eq. (29) can be simplified as

R0013
2�eff ¼ R2 þ

R1 � R2ð Þtp

8sþ 4tp
þ ðR1 � R2Þl2 ð31Þ

If we substitute offset and pulse amplitude back into Eq. (31), con-
sider that tpb1 = p and change the unit of offset to Hertz, we have
Fig. 5. Approximation of one echo which is called Model 3 in [11]. The hatched
rectangle represents effective rotations. A soft p pulse is approximated by an
effective rotation of tp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ b12

p
with two on-resonance delays of tp/2. Although

this approximation provides a good performance [11], R1 contamination cannot be
observed in this approximation because the relaxations within the pulse are split
out.
R0013
2�eff ¼ R2 þ

R1 � R2ð Þtp

8sþ 4tp
þ ðR1 � R2Þð2tpvÞ2 ð32Þ

where v represents the offset in Hz.
Supposing we obtain the effective R2 of 0013 experiments by

fitting e�tR2, then the following formula will give the true R2 based
on Eq. (29),

R2 ¼ R2�eff �
tp R1� R2�eff

� �
8sþ 3tp

�
4 1� e

�4 2sþtpð Þ2ðR1�R2�eff Þ
8sþ3tp

 !

8sþ 3tp
l2 þ Oðl4Þ

ð33Þ

Eq. (33) could also be simplified under the condition Eq. (30).
We can do 0013 CPMG experiments, and fit the data to e�t R2 to

obtain the effective R2 directly in Bruker’s TOPSPIN, and then apply
Eq. (33) to estimate the true R2. Results of simulation and experi-
ments illustrate this methodology.

Fig. 6 reproduces the simulation in Fig. 6 of [12] as well as the
second-order expression of the effective decay rate, Eq. (29). In this
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Fig. 7. The profile of measured effective R2 using 0013 phase variation with respect
to offsets. The circles represent the measured R2 fitted by the function e�tR2 , the
triangle points are given by Eq. (29). Most of these points within � 1

2 cB1 match well.
The parameters and descriptions of the experiments are displayed in the next
section.
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Fig. 9. The profile of measured R2 from conventional CPMG experiments plotted with
respect to ratio of offset over the amplitude of the p pulse. The two dotted lines
correspond to ±5% of 9.64 s�1 which is the measured on-resonance R2. This figure
shows that offset effects can be eliminated by fitting the exact solution of the Bloch
equations, when kxk 6 0.3cB1 which is narrower than the range of 0.5cB1 we observed
in [11], possibly because CPMG experiments accumulate the inhomogeneity effects.

190 A.D. Bain et al. / Journal of Magnetic Resonance 209 (2011) 183–194
simulation, the excitation pulse is along the y axis, the intensities
are computed at loops 2, 12, and 35 with the average magnetiza-
tion from phase variation schemes 0000 and 2222, or 0013 and
2231, respectively. Fitting these intensities with e�tR2 , we get the
effective measurements of R2 (red and green curves of Fig. 6).
The blue curve of Fig. 6 is plotted using Eq. (29). If we change
the sampling loops or increase the sampling numbers, the red
curve may be different because of oscillations, but the green curve
may not change, especially when offsets are smaller. This implies
that the sampling loops of the 0013 phase variation scheme can
be choosen arbitrarily.

Fig. 7 is obtained from CPMG experiments using the 0013 phase
variation scheme which are described in the next section. Both
Figs. 6 and 7 confirm that Eq. (29) predicts the effective R2 accu-
rately approximately within ±1

2 cB1 which is much wider than the
range of ±0.15cB1 given by Eq. (26) in [12] and the range investi-
gated in [13].

As the 0013 phase variation scheme can eliminate the intensity
oscillations and spins mostly refocus after one loop, the effects of
the B0 and B1 inhomogeneity may be restrained as well. Eq. (29)
demonstrates that 1% error of the ratio of offset over the amplitude
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Fig. 8. Fitted curves and measured intensities of the conventional CPMG experiments. The x axis is the echo number, the y axis is the intensity, normalized so that the
maximum measured intensity is 1. The triangles are measured intensities, the curves are the results of fitting the exact solution of the Bloch equations. The offsets are 0.0, 50,
150, 250, and 500 Hz corresponding to the ratio of x

cB1
{0,0.10,0.30,0.50,1.00} from the top to the bottom, the measured R2 are 9.64, 9.66, 9.73, 11.03, and 13.39 s�1,

respectively. In all cases, R1 = 0.227 s�1.
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of the pulse only result in 2% error of the second-order terms of
effective R2. Numerical simulations also verify that variations of
offset or the pulse amplitude have less effects of measurements
of R2 using the 0013 phase variation scheme than using the con-
ventional CPMG experiments when the offsets are within half of
the pulse amplitude.
7. Fitting CPMG experiments with the exact solution

In [11], we found that by using the exact solution of the Bloch
equation for data fitting, we could eliminate offset effects for Hahn
echo data when jjxjj 6 1

2 cB1. In this section, we will similarly show
how to estimate R2 from CPMG data using the exact solution of the
Bloch equations and compare the measurements of R2 using the
0013 phase variation scheme given by Eq. (33).

Eq. (6) is the formula to compute the magnetization after the
nth echo, which we fit to the measured intensities in CPMG exper-
iments using the objective
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Fig. 10. Fitted curves and measured intensities for phase variation scheme 0013. Norm
measured intensities, the curves are the result of fitting the exact solution of the Bloch eq
{�0.01,0.10,0.30, 0.50,1.00}. The effective R2s are 9.17, 9.05, 8.52, 7.44 and 9.50 s�1 and th
R1 = 0.227 s�1.
min
XK

k¼1

Mmeas½k� � I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

x;m½k� þM2
y;m½k�
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2

ð34Þ

where Mmeas[k] is the kth measured intensity, and Mx,y,m[k] com-
puted by Eq. (6) are magnetizations at the m[k]th echo which corre-
spond to the kth measured intensity. Supposing that the array of m
which stores the index of echo numbers corresponding to the kth
measured intensity is in the ascending order, the maximum echo
number will be m[K] which is the size of the arrays of Mx, My and
Mz, where K is the number of measured points. If considering multi-
ple scans, the arrays can be set as two-dimensional arrays, one
dimension will represent the scan number.

The experiments were performed on Bruker AVANCE 500 MHz
spectrometer with the Shigemi tube and a 5 mm inverse geometry
probe, the sample was cyclohexane and the solvent was CDCl3, the
temperature was adjusted to 280 K, the amplitude of the p pulse
was equivalent to 500 Hz which means that the length of the p
pulses was 0.001 s. The excitation pulse was along the y axis and
the length of the excitation pulse (equivalent to 30,300 Hz) was
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alized intensity is plotted against echo number divided by four. The triangles are
uations. The offsets are �6.28, 50, 150,250, and 500 Hz corresponding to x

cB1
ratios of

e measured true R2s are 9.65, 9.59, 9.55, 9.69 and 10.82 s�1, respectively. In all cases,



 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

-1 -0.5  0  0.5  1

R
2 

(s
-1

)

ω/γB1

Fig. 12. Measured R2 of the phase variation scheme 0013 plotted against the ratio of
offset over the amplitude of the p pulse, including circles for exact solution fitting
from Fig. 11 and triangles obtained by fitting Eq. (33) to the same experiment data
(the circle points in Fig. 7). This figure tells us that fitting the exact solution of the
Bloch equations provides allows us to cover almost twice the offset frequency range
in one experiment.
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8.25ls. The delay time between the excitation pulse and the first p
pulse was set to 0.002 s. The pre-scan delay called DE in Bruker
spectrometers was 6.5 ls. The measured R1 was 0.227 s�1 and
the measured R2 obtained by the conventional CPMG experiment
with high-power pulses on resonance was 9.84 s�1.

Two sets of experiments with a range of offsets and two differ-
ent phase-variation strategies were performed: the conventional
CPMG experiments with phases ±x, and modified CPMG with
phases {±x, ±x, ±y,	y}, i.e. 0013 and 2231. The phase of the receiver
coil was set to 0. The data for each experiment was collected with
two scans (one scan is the 0013 phase variation scheme and an-
other is 2231. These two scans can also be performed with excita-
tion pulse alternation of one phase variation scheme [12]), and the
measured intensities were obtained using TOPSPIN software. The
measured R2 obtained by the conventional CPMG experiment using
soft pulses on resonance was 9.64 s�1 and the measured R2 ob-
tained by the 0013 CPMG experiment using soft pulses at
�6.28 Hz was 9.65 s�1. The error of these measurements of R2 is
2% relative to the measured R2 obtained by the CPMG experiment
with high-power pulses.

The optimization model matching the pulse programs was
coded to the C++ interface of IPOPT [57] using the exact gradient
and Hessian of the objective function. The C++ code of the exact
solution of the Bloch equations and its first-order and second-order
partial derivatives with respect to R2 was generated by the codegen
function in Maple, the chain rule [50] was applied to take advan-
tage of the intermediate variables to efficiently compute the gradi-
ent and Hessian of the objective function. With exact second-order
derivatives, the underlying methods used by IPOPT converge qua-
dratically (versus linearly with only first-order derivatives) and are
more robust [57]. All solver options were used the default value ex-
cept the iteration number of 500 and the initial values of I0 = 1 and
R2 = 9.84.

In order to simplify the computation, the magnetization after a
hard excitation pulse can be set as (1,0,0,1)T, but if the excitation
pulse is not a hard pulse, the fitting model should include effects of
the excitation pulse. The fitting model can also incorparate the ef-
fects of B0 and B1 inhomogeneity as explained in [11]. In this paper,
the fitting model does not incorporate the field inhomogeneity, but
the model does incorporate the effects of the excitation pulse.
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Fig. 11. Measured R2 of the phase variation scheme 0013 plotted against the ratio of
offset over the amplitude of the p pulse. The two dotted lines represent ±5% of
9.64 s�1, R2 measured on resonance. Fitting the exact solution to 0013 data
effectively eliminates the effects on measured R2 of offsets within the amplitude of
the p pulse except some values, which is significantly wider than the conventional
CPMG experiments shown in Fig. 9. This figure also validates that the 0013 phase
variation scheme can suppress the effects of the inhomogeneity. We see there is one
exception at x/cB1 = �0.55 corresponding to �275 Hz.
Fig. 8 makes apparent the oscillation in measured intensities in
conventional CPMG experiments. Although both of Fig. 9 and Fig. 8
of [11] were fitted by the exact solution of the Bloch equations, the
offset range of the conventional CPMG experiments, which can
provide reliable measurements of R2, is narrower than the range
using the Hahn echo experiments. This comparison illustrates that
conventional CPMG experiments accumulate errors due to field
inhomogeneity.

Fig. 10 exhibits the reduced oscillations in measured intensities
associated with the 0013 phase variation scheme. Fig. 11 reveals
that it is possible to acquire reliable R2 estimates when offsets
are roughly within cB1.

Figs. 9 and 11 demonstrate that the fitting procedures using the
exact solution of the Bloch equations can provide reliable measure-
ments of R2 in a wide range. Moreover, the 0013 phase variation
scheme can cover a much wider range than the conventional CPMG
experiments, showing that the phase variation scheme 0013 can
suppress the effects of the B0 and B1 inhomogeneity.

Fig. 12 confirms that the second-order effective R2 expression
(Eq. (29)) or the second-order corrections of measurements of R2

(Eq. (33)) are reliable to analyze CPMG experiments of the 0013
phase variation scheme in a specific offset range, considerably
smaller than obtained by fitting to the exact solution. If the re-
duced range is sufficient, however, fitting to the second-order
approximation is easier to implement.
8. Conclusion

In this paper, we used exact and approximate solutions of the
Bloch equations for CPMG experiments to investigate the perfor-
mance of these experiments. We explored the oscillations of con-
ventional CPMG experiments and applied Taylor series to show
that using even echoes of hard pulses, we can reduce the error
due to pulse imperfections. We also proposed a method of investi-
gating oscillations in measured intensities at different echoes, the
effect of different phases of p pulses and the minimization of those
oscillations with respect to the phase variation scheme. Soft p
pulses make the data processing more complicated because relaxa-
tion and offset cannot be ignored within pulses. A second-order
expression of the effective R2 under the 0013 phase variation
scheme was deduced from the solutions of the Bloch equations.
Simulations and experiments indicate that this second-order
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approximation is valid when offsets are roughly within � 1
2 cB1 of

resonance. The exact solution of the Bloch equations was also ap-
plied to fit CPMG data. The experiments revealed that the 0013
phase variation scheme can not only provide non-oscillated mea-
sured intensities, but also suppress the effects of the field inhomo-
geneity. Without considering inhomogeneity, but using the exact
solution of the Bloch equations, the 0013 scheme can deliver reli-
able R2 measurements when offsets are almost everywhere within
±cB1 which is much wider than the accurate offset range for the
conventional CPMG experiments. The accurate offset range for the
conventional CPMG experiment is even smaller than the second-
order method or the Hahn echo experiments [11]. We saw that if
offsets are roughly within ±1

2 cB1, the fitting to the second-order
expression of the effective R2 is as good as fitting to the exact solu-
tion. If, however, the absolute values of offsets are between 1

2 cB1 to
cB1, the exact solution of the Bloch equations should be applied to
extract accurate R2s. If the offsets are not within ±cB1, measured
R2 may be unreliable. Without doubt, the fitting to the exact solu-
tion provides a worthwhile improvement, meaning that it is impor-
tant to develop data-processing methods. As we have seen in this
paper and [11], even when we use the exact solution of the Bloch
equations, field inhomogeneity will rob the process of accuracy out-
side some offset range. If the distribution of the inhomogeneity can
be fully mapped, it is possible to improve the fitting results [11], but
it is a challenge to exactly map the inhomogeneity [58]. In the fu-
ture, we hope to design optimal shaped universal rotation pulses
which can overcome the B1 inhomogeneity and provide uniform
spectroscopy of CPMG experiments in an even wider range of off-
sets and then we will apply these optimal pulses to measure R2.
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